ANALYSIS OF SEVERAL VARIABLES BACKPAPER EXAMINATION

Total marks: 100
Attempt any SIX questions.
Time: 3 hours
(1) State the Maximum Value Theorem. Show that the rectangular box of maximum volume with a given surface area is a cube. $(5+5=10$ marks)
(2) State the Lagrange Multiplier Theorem. Find the shortest possible distance from the ellipse $x^{2}+2 y^{2}=2$ to the line $x+y=2 . \quad(5+5=$ 10 marks)
(3) State the Inverse Function Theorem. Determine at which points $P=(a, b, c)$ the function $f(x, y, z)=(x+y+z, x y+x z+y z, x y z)$ has a local C^{1} inverse g, and calculate $D g(f(P)) .(5+5=10$ marks $)$
(4) State the Implicit Function Theorem. Check that the equation $F\left(x_{1}, x_{2}, y\right)=e^{x_{1} y}+y^{2} \cos \left(x_{1} x_{2}\right)-1=0$ defines y locally as a C^{1} function $\phi\left(x_{1}, x_{2}\right)$ near the point $(1,2,0)$, and calculate $D \phi(1,2)$. ($5+5=10 \mathrm{marks}$)
(5) Define the notion of a saddle point of a differentiable function f : $\mathbb{R}^{n} \rightarrow \mathbb{R}$. Find and classify all the critical points of $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $f(x, y)=x^{3}+y^{2}-6 x y .(5+5=10$ marks $)$
(6) State Fubini's Theorem. Is there an integrable function on a rectangle $[a, b] \times[c, d] \in \mathbb{R}^{2}$ neither of whose iterated integrals exist? $(5+5$ $=10$ marks)
(7) State the Change of Variables Theorem. Let S be the plane region in the first quadrant bounded by the curves $y=x, y=2 x, x y=3$ and $x y=1$. Evaluate $\int_{S} \frac{x}{y} d A .(5+5=10$ marks $)$
(8) Let C be the curve which is the intersection of the unit sphere and the plane $x+y+z=0$ in \mathbb{R}^{3}, oriented anticlockwise when viewed from high above the $x y$-plane. Evaluate the line integral $\int_{C} y d x$. (10 marks)
(9) Let S be the unit sphere oriented with outward-pointing normal. Calculate $\int_{S} x d y \wedge d z$ by parametrizing S with spherical coordinates $g(\phi, \theta)=(\sin (\phi) \cos (\theta), \sin (\phi) \sin (\theta), \cos (\phi))(10$ marks $)$
(10) State Stokes's Theorem. Let S be the sphere $x^{2}+y^{2}+(z-1)^{2}=1$ in \mathbb{R}^{3} oriented with outward unit normal. Evaluate $\int_{S} \omega$ where $\omega=$ $x z d y \wedge d z+y z d z \wedge d x+z^{2} d x \wedge d y .(5+5=10$ marks $)$

